

Neural Networks

(P-ITEEA-0011)

Multilayer Perceptron Back-propagation algorithm

Akos Zarandy Lecture 3 September 23, 2018

Contents

- Recall
 - Single-layer perceptron and its learning method
- Multilayer perceptron
 - Topology
 - Operation
- Representation
- Blum and Li construction
- Learning
 - Back-propagation

Single-layer Perceptron

Input

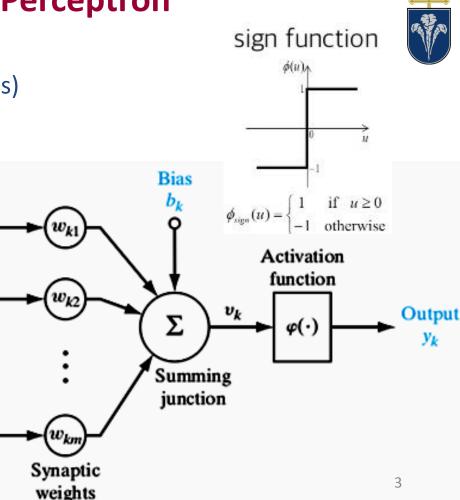
signals

- Receives input through its synapsis (x_i)
- Synapsis are weighted (*w_i*) (including bias)
- A weighted sum is calculated
- Nonlinear activation function

$$y_k = \varphi \left(\sum_{i=0}^m w_{ki} x_i \right) = \varphi (\mathbf{w}^T \mathbf{x})$$

 x_i : input vector w_{ki} : weight coefficient vector v_k : weighted sum b_k : bias value of neuron k o_k : output value of neuron k

9/28/2018.

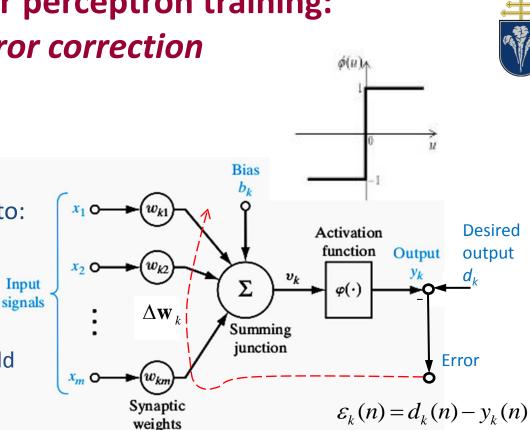


Single-layer perceptron training: Error correction

- Apply the input vector (x_i)
- Calculate the output
- If output is false
- Modify the weights according to:

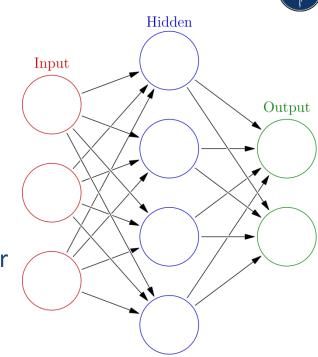
 $\Delta \mathbf{W}_{k} = \eta \, \varepsilon_{k}(n) \, \mathbf{x}(n)$

- **Operation**:
 - When error is positive the contribution of $w_{ki}x_i$ should be increased
- Convergence is proven in case of linearly separable task



Multilayer perceptron

- Different names of Multilayer perceptron
 - Feed forward neural networks (FFNN)
 - Fully connected neural networks
- Multilayer neural network
 - Input layer
 - Hidden layers
 - Output layer
 - The outputs are the inputs of the following layer
 - Many hidden layers \rightarrow deep network
- Multiple inputs, multiple outputs



Multilayer perceptron

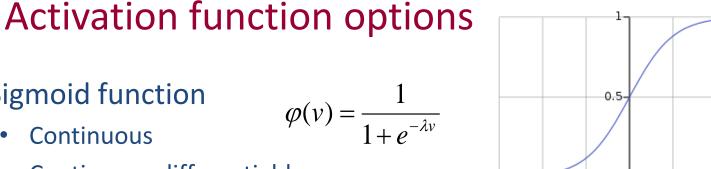
- Multilayer perceptrons are used for
 - Classification
 - Supervised learning for classification
 - Given inputs and class labels
 - Approximation
 - Approximate an arbitrary function with arbitrary precision
 - Prediction
 - "What is the next element in the future of given time series?"
 - Stock market, currency exchange

Topology and naming $w_{10}^{(1)}$ $W_{10}^{(2)}$ $W_{ii}^{(l)}$ $w_{11}^{(1)}$ $v^{(1)}$ • Weights: **X**₁ $w_{11}^{(2)}$ • Arrives to the *l*th layer $W_{21}^{(1)}$ y_1 • Comes from the *j*th neuron from the $(l-1)^{\text{th}}$ $w^{(1)}$ last layer: (1) $w_{12}^{(2)}$ layer output layer X₂ • Arrives to the *i*th neuron $w_{22}^{(1)}$ of the *l*th layer 0th layer: layer $w^{(l)}$ input layer 1st layer: source first hidden layer destination 7

$\varphi(v) = \frac{1}{1 + e^{-\lambda v}}$

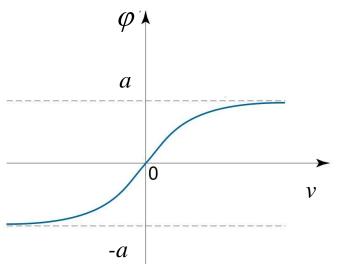
Sigmoid function

- Continuous
- Continuous differentiable
- We will use this
- Hyperbolic tangent function
 - Continuous
 - Continuous differentiable
 - a, b > 0 $\varphi(v) = a \tanh(bv)$



-2

0



2

4

6

Operation

• Signal flow through the network progresses left to right

• The output of the network:

$$Net(\mathbf{W}, \mathbf{x}) = y = \phi \left(\sum_{i=1}^{n^{L}} w_{i}^{(L)} \cdot \phi \left(\sum_{j=1}^{n^{L-1}} w_{ij}^{(L-1)} \cdot \ldots \cdot \phi \left(\sum_{m=1}^{n^{1}} w_{km}^{(1)} x_{m} \right) \ldots \right) \right)$$

• Where

$$\mathbf{W} = \left(w_{1,0}^{(1)}, w_{1,1}^{(1)}, w_{1,2}^{(1)}, \dots, w_{1,0}^{(2)}, w_{1,1}^{(2)}, \dots, w_{1,0}^{(L)}, \dots\right)$$

$$\phi(v) = \frac{1}{1 + e^{-\lambda v}} \qquad \phi, \phi \text{ are the same lower case Phi}$$

• Number of layers: L, neurons in l^{th} layer: n^l

Hidden

Output

Input

Questions

- When solving engineering task by FFNN we are faced with the following questions:
- 1. Representation
 - What kind of functions can be represented by an FFNN?
- 2. Learning
 - How to set up the weights to solve a specific given task?
- 3. Generalization
 - If only limited knowledge is available about the task which is to be solved, then how the FFNN is going to generalize this knowledge?

Output

Hidden

Input

Representation

$$\left. \begin{array}{c} \forall F(\mathbf{x}) \in \mathcal{F} \\ \varepsilon > 0 \end{array} \right\} \rightarrow \exists \mathbf{w} : \left\| F(\mathbf{x}) - Net(\mathbf{x}, \mathbf{w}) \right\| < \varepsilon$$

• The notation || || defines a norm used in $\mathcal F$ space

$$\int \mathbf{L}_{\mathbf{X}} \int \left(F(\mathbf{x}) - Net(\mathbf{x}, \mathbf{w}) \right)^p \mathbf{d}x, \dots \mathbf{d}x_N < \varepsilon$$

• For example error computed as follows in L^{p}

Representation – Theorem 1

- Theorem (Harnik, Stinchambe, White 1989)
- Every function in L^p can be represented arbitrarily closely approximation by a neural net
- More precisely for each $F(x) \in L^p$

 $\forall \varepsilon > 0, \exists \mathbf{w}$

Recall:

$$L^{1}: \int \mathbf{L}_{\mathbf{X}} \int (F(x)) \mathbf{d}x, \dots \mathbf{d}x_{N} < \infty$$

$$L^{2}: \int \mathbf{L}_{\mathbf{X}} \int (F(x))^{2} \mathbf{d}x, \dots \mathbf{d}x_{N} < \infty$$

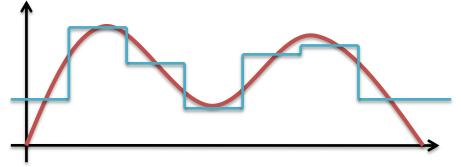
$$L^{p}: \int \mathbf{L}_{\mathbf{X}} \int (F(x))^{p} \mathbf{d}x, \dots \mathbf{d}x_{N} < \infty$$

$$\int \mathbf{L}_{\mathbf{X}} \int \left(F(\mathbf{X}) - Net(\mathbf{X}, \mathbf{W}) \right)^p \mathbf{d}x, \dots \mathbf{d}x_N < \varepsilon$$

• Since it is out of the focus of the course this proof will not be presented here

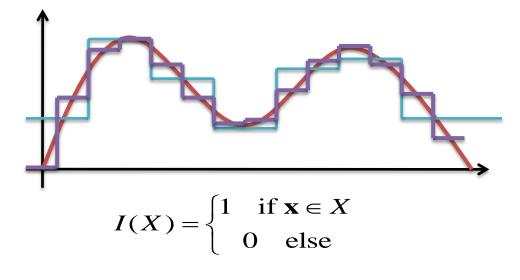
Representation – Blum and Li theorem

- Theorem: $F(x) \in L^2$ $\forall \varepsilon > 0, \exists \mathbf{w}$
- Proof: $\int \mathbf{L}_{\mathbf{X}} \int (F(\mathbf{x}) Net(\mathbf{x}, \mathbf{w}))^2 \mathbf{d}x, \dots \mathbf{d}x_N < \varepsilon$
 - Using the step functions: S
 - From elementary integral theory it is clear every function can be approximated by appropriate step function sequence



Representation – Blum and Li theorem

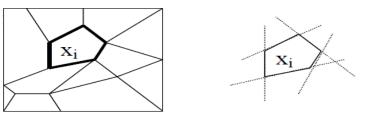
- This step function can have arbitrary narrow steps
- For example each step could be divided into two sub-steps
- Therefore we can synthetize



$$F(x) \cong \sum_{i=1}^{i=1} F(x_i) I(x_i)$$

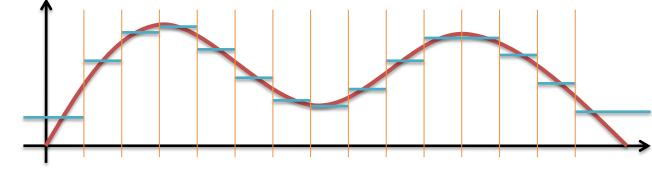
Representation – Blum and Li theorem

- These steps partition the domain of the function
- One partition can be easily represented by small neural network
 - In two dimension the following figure gives an example

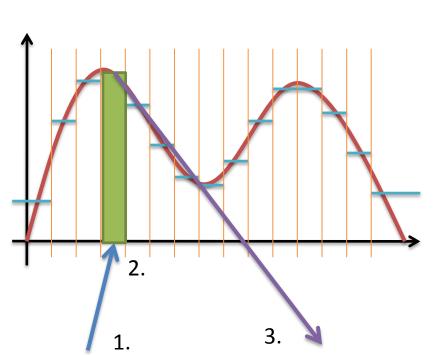


• The borders of the partition are hyper planes which could represented by one perceptron

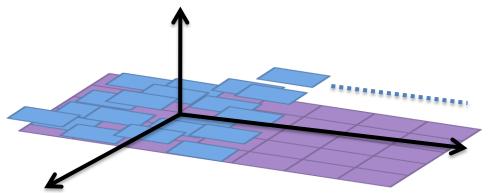
- The Blum and Li construction is based on the "LEGO" principle
- The approximation of the F function is based on its step functions
- This step function partitions the domain of the original F function
- For each partition there is a neuron responsible for approximation the "step"
- If the input of the FFNN (x) falls into a given range the appropriate approximator neuron has to be selected
- The output of the network should be this selected value



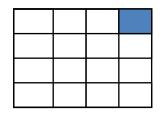
- Incoming arbitrary x value
- 2. The appropriate interval will be selected
- The response of the network is the response of selected neuron (approximator)

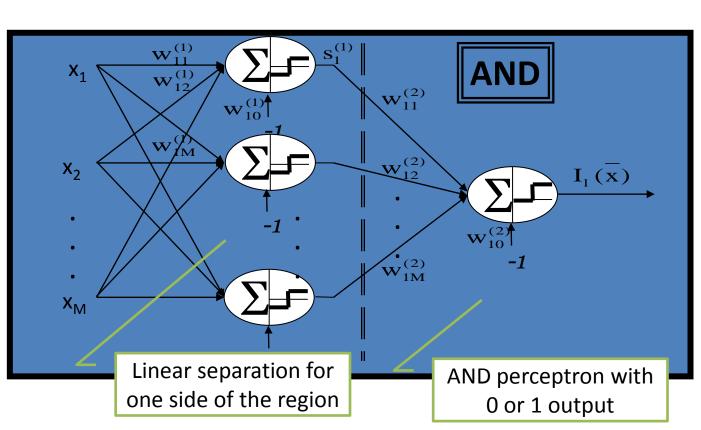


- This construction ...
 - ... has no dimensional limits
 - ... has no equidistance restrictions on tiles (partitions)
 - ... can be further fined, and the approximation can be any precise
- 2 dimensional example
 - The tiles are the top of the columns for each approximation cell



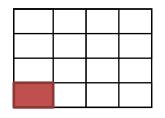
- Construction for one particular region
- The output is I₁ if we are in this region

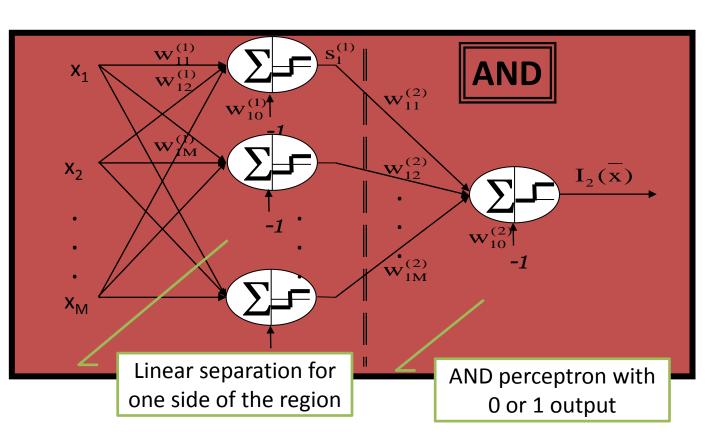




9/28/2018.

- Construction for one particular
 - region
- The output is I₂ if we are in this region

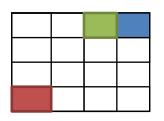


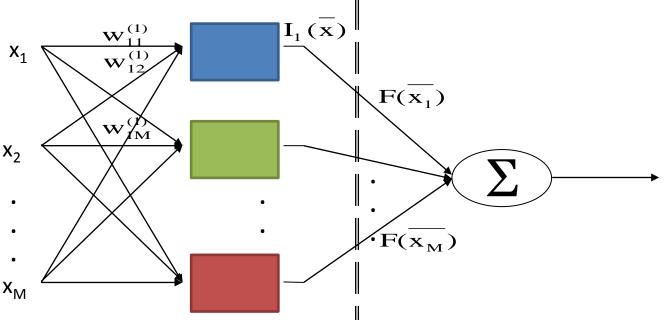


9/28/2018.

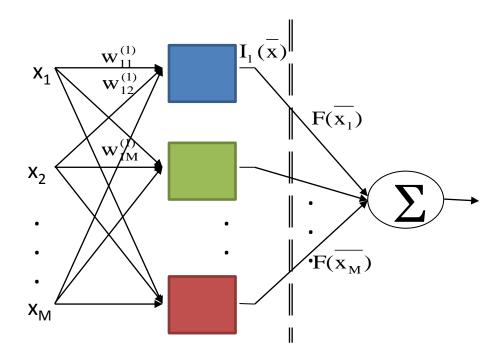
Each region

 is being
 approximated
 by a block
 specified
 x₂
 above



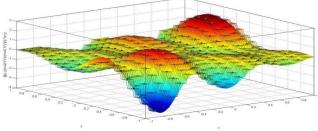


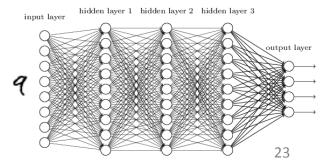
- Third layer
 - This neuron has linear activation function
 - The weights of this neuron are the approximation values of the F function
 - Thus the approximation for the whole domain of the original F function is done by FFNN



Blum and Li – Limitations

- The size of the FFNN constructed via this method is quite big
- Consider the task on the picture, where let us have 1000 by 1000 cell to approximate the function
- General case:
 ~2 Million neurons are needed
- Smoother approximation needs more
- We are after to find a less complicated architecture





 $\mathbf{w}_{\text{opt}} : \min_{\mathbf{w}} \left\| \mathbf{F}(\mathbf{x}) - \operatorname{Net}\left(\mathbf{x}, \mathbf{w}\right) \right\|^{2} = \min_{\mathbf{w}} \int ..\int \left(\mathbf{F}(\mathbf{x}) - \operatorname{Net}\left(\mathbf{x}, \mathbf{w}\right) \right)^{2} dx_{1} ... dx_{N}$

- Nor minimization task neither construction is possible most cases
 - Complete information would be needed about F(x), however it is typically unknown
- Weak learning in incomplete environment, instead of using F(x)

$$\tau^{(K)} = \{ (\mathbf{x}_k, d_k); k = 1, ..., K \}$$

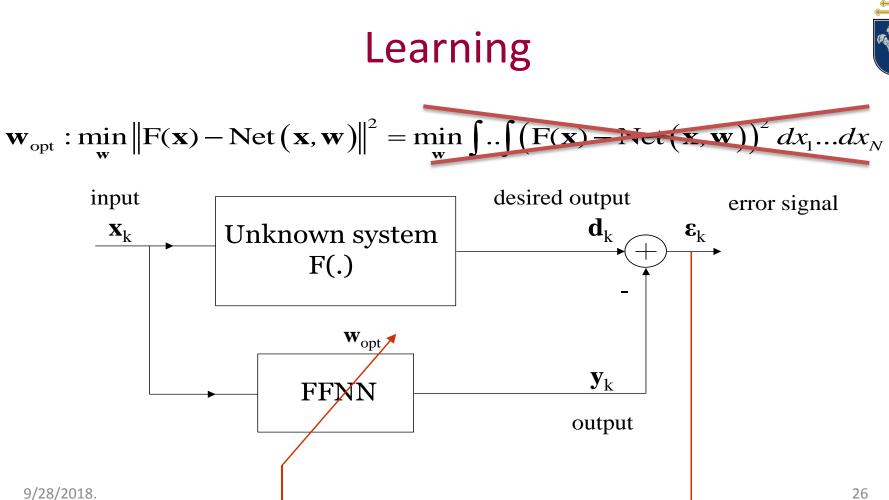
• A training set is being constructed of observations

• Rather than minimizing the error function

$$\mathbf{w}_{\text{opt}} : \min_{\mathbf{w}} \left\| \mathbf{F}(\mathbf{x}) - \operatorname{Net}(\mathbf{x}, \mathbf{w}) \right\|^{2} = \min_{\mathbf{w}} \int .. \int \left(\mathbf{F}(\mathbf{x}) - \operatorname{Net}(\mathbf{x}, \mathbf{w}) \right)^{2} dx_{1} ... dx_{N}$$

- The approximation is the best achievable
 - F function is known in a limited positions (training set)

$$\mathbf{w}_{_{\mathrm{opt}}}^{(K)}:\min_{\mathbf{w}}\frac{1}{K}\sum_{k=1}^{K}\left(d_{k}-Net\left(\mathbf{x}_{k},\mathbf{w}\right)\right)^{2}$$



- The questions are the following
 - What is the relationship of these optimal weights

$$\mathbf{w}_{\text{opt}} \stackrel{???}{\Leftrightarrow} \mathbf{w}_{\text{opt}}^{(K)}$$
$$\mathbf{w}_{\text{opt}}^{(K)} : \min_{\mathbf{w}} \frac{1}{K} \sum_{k=1}^{K} \left(d_k - Net\left(\mathbf{x}_k, \mathbf{w}\right) \right)^2$$

 How this new objective function should be minimized as quickly as possible

Statistical learning theory

• Empirical error

$$R_{emp}\left(\mathbf{w}\right) = \frac{1}{K} \sum_{k=1}^{K} \left(d_k - Net\left(\mathbf{x}_k, \mathbf{w}\right)\right)^2$$

• Theoretical error

$$\left\| \mathbf{F}(\mathbf{x}) - \operatorname{Net}\left(\mathbf{x}, \mathbf{w}\right) \right\|^{2} = \int \dots \int \left(\mathbf{F}(\mathbf{x}) - \operatorname{Net}\left(\mathbf{x}, \mathbf{w}\right) \right)^{2} dx_{1} \dots dx_{N}$$

- Let us have \boldsymbol{x}_k random variables subject to uniform distribution

Statistical learning theory

• **x**_k random variable, where *d*=F(**x**)

$$\lim_{k \to \infty} = \frac{1}{K} \sum_{k=1}^{K} \left(d_k - Net(\mathbf{x}_k, \mathbf{w}) \right)^2 = E \left(d - Net(\mathbf{x}, \mathbf{w}) \right)^2 =$$

$$\int \cdots \int \left(F(\mathbf{x}) - Net(\mathbf{x}, \mathbf{w}) \right)^2 p(\mathbf{x}) dx_1 \cdots dx_N =$$
Because it is ~ constant due to the uniformity
$$\frac{1}{|X|} \int \cdots \int \left(F(\mathbf{x}) - Net(\mathbf{x}, \mathbf{w}) \right)^2 dx_1 \cdots dx_N :$$

$$\int \cdots \int \left(F(\mathbf{x}) - Net(\mathbf{x}, \mathbf{w}) \right)^2 dx_1 \cdots dx_N$$

Statistical learning theory

• Therefore

$$\lim_{K \to \infty} \mathbf{w}_{\text{opt}} = \mathbf{w}_{\text{opt}}^{(K)}$$

• Where I.i.m. means: lim in mean

$$\lim_{K \to \infty} R_{emp} \left(\mathbf{w} \right) = R_{th} \left(\mathbf{w} \right)$$
$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \left(d_k - Net \left(\mathbf{x}_k, \mathbf{w} \right) \right)^2 = \int \dots \int \left(F(\mathbf{x}) - Net \left(\mathbf{x}, \mathbf{w} \right) \right)^2 dx_1 \dots dx_N$$

Weak learning is satifactory!

Learning – in practice

• Learning based on the training set:

$$\tau^{(K)} = \left\{ \left(\mathbf{x}_k, d_k \right); k = 1, \dots, K \right\}$$

• Minimize the empirical error function (*R*_{emp})

$$\mathbf{w}_{_{\mathrm{opt}}}^{(K)}: \min_{\mathbf{w}} \frac{1}{K} \sum_{k=1}^{K} \left(d_{k} - Net\left(\mathbf{x}_{k}, \mathbf{w}\right) \right)^{2} = \min_{\mathbf{w}} R_{emp}\left(\mathbf{w}\right)$$

• Learning is a multivariate optimization task

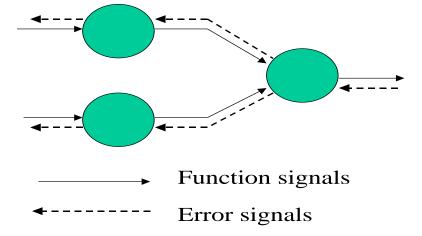
Learning – Newton method

• First order gradient based optimization method:

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \eta \cdot \operatorname{grad}_{\mathbf{w}} \left\{ R_{\operatorname{emp}}(\mathbf{w}(k)) \right\}$$

- Iterative method
 - Each step modify the weights
 - To reduce the error
- The empirical error of the actual neuron is computed
- The gradient of this error is used to modify the weight

- The Rosenblatt algorithm is inapplicable,
 - the error and desired output in the hidden layers of the FFNN is unknown
- Someway the error of the whole network has to be distributed to the internal neurons, in a feedback way



Forward propagation of function signals and back-propagation of errors signals

Sequential back propagation

• Adapting the weights of the FFNN

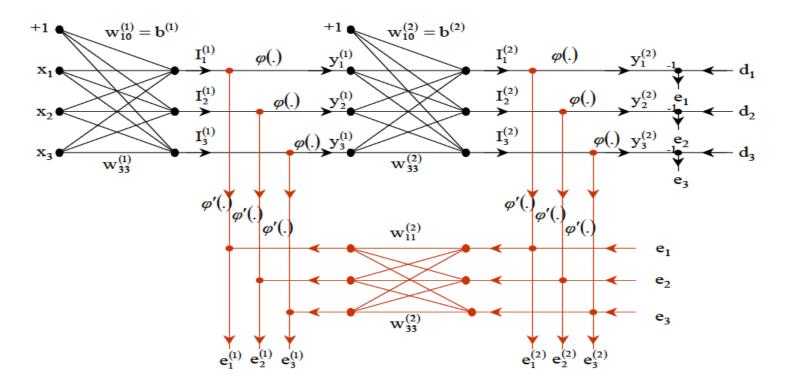
$$w_{ij}^{(l)}(k+1) = w_{ij}^{(l)}(k) + \Delta w_{ij}^{(l)}(k)$$
$$\Delta w_{ij}^{(l)}(k) = ?$$

• The weights are modified towards the differential of the error function: ∂R_{emp}

$$\Delta w_{ij}^{(l)} = -\eta \, \frac{\partial \mathcal{R}_{emp}}{\partial w_{ij}^{(l)}}$$

• The elements of the training set adapted by the FFNN sequentially $R_{emp} = R_{emp}(y(\mathbf{x}), d)$

Propagation and back propagation

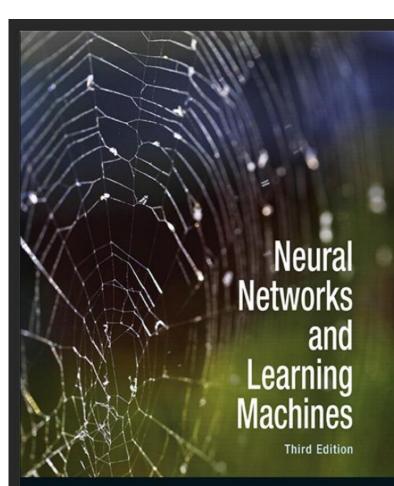


Sequential or batch training mode

- Sequential mode:
 - For each training vector both the forward and the backward propagation is done one after the other
 - Weights are updated after each input
- Batch mode:
 - All the training vectors are applied, and the total error of the training set is calculated
 - The weight updates are calculated with the accumulated error

Literature

- Simon Haykin:
 Neural Networks and Learning Machines
- Back propagation: Page 129-141
- http://dai.fmph.uniba.sk/courses/NN/haykin. neural-networks.3ed.2009.pdf



Simon Haykin