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• Receives input through its synapsis (xi) 

• Synapsis are weighted (wi) (including bias) 

• A weighted sum is calculated 

• Nonlinear activation function 

Single-layer Perceptron 

xi : input vector 
wki : weight coefficient vector 
vk : weigthted sum 
bk : bias value of neuron k 
ok : output value of neuron k 
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Single-layer perceptron training:  
Error correction  

Desired 
output 
dk 

Error 
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• Apply the input vector (xi) 

• Calculate the output 

• If output is false 

• Modify the weights according to: 

 
 

• Operation: 
• When error is positive  

the contribution of wkixi should  
be increased 

• Convergence is proven in case  
of linearly separable task 
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Multilayer perceptron 
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• Different names of Multilayer perceptron  
• Feed forward neural networks (FFNN) 
• Fully connected neural networks 

• Multilayer neural network 
– Input layer 
– Hidden layers 
– Output layer 
– The outputs are the inputs of the following layer 
– Many hidden layers  deep network 

• Multiple inputs, multiple outputs 



Multilayer perceptron 
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• Multilayer perceptrons are used for 
• Classification 

• Supervised learning for classification 
• Given inputs and class labels 

• Approximation 
• Approximate an arbitrary function with arbitrary precision 

• Prediction 
• „What is the next element in the future of given time 

series?” 
• Stock market, currency exchange 



Topology and naming 
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• Weights:    

• Arrives to the  lth layer 

• Comes from the jth 
neuron from the (l-1)th 
layer 

• Arrives to the ith neuron 
of the lth layer 
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• Sigmoid function 
• Continuous  

• Continuous differentiable 

• We will use this 

 

• Hyperbolic tangent function 
• Continuous  

• Continuous differentiable 

• a, b > 0 

 

Activation function options 

9/28/2018. 8 

ve
v







1

1
)(

)tanh()( bvav 

a 

-a 



v 



• Signal flow through the network progresses left to right 

 

• The output of the network: 

 
• Where 

 
 

                                              

• Number of layers: L, neurons in lth layer: nl 

Operation 
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• When solving engineering task by FFNN  
we are faced with the following questions: 

Questions 
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1. Representation 
– What kind of functions can be represented by an FFNN? 

2. Learning 
– How to set up the weights to solve a specific given task? 

3. Generalization 
– If only limited knowledge is available about the task which is to be 

solved, then how the FFNN is going to generalize this knowledge? 



• Can it approximate a function? 
Can it approximate all the function? With what precision? 

 

 
 

• The notation || || defines a norm used in F space 

 
• For example error computed as follows in L

p 

 

 

Representation 
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• Theorem (Harnik, Stinchambe, White 1989) 

• Every function in L
p
 can be  

represented arbitrarily closely  
approximation by a neural net 

• More precisely for each 

 

 

 

• Since it is out of the focus of the course this proof will not be 
presented here 

 

Representation – Theorem 1 
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• Theorem: 

 

• Proof: 
• Using the step functions: S 
• From elementary integral theory it is clear every function can be 

approximated by appropriate step function sequence 

 

Representation – Blum and Li theorem 
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• This step function 
can have arbitrary 
narrow steps 

• For example each 
step could be divided 
into two sub-steps 

• Therefore we can  
synthetize 

 

Representation – Blum and Li theorem 
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• These steps partition the domain of the function 
• One partition can be easily represented by small neural 

network 
• In two dimension the following figure gives an example 

 
 
 
 

• The borders of the partition are hyper planes which could 
represented by one perceptron 

Representation – Blum and Li theorem 
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• The Blum and Li construction is based on the „LEGO” principle 
• The approximation of the F function is based on its step functions 
• This step function partitions the domain of the original F function 
• For each partition there is a neuron responsible for approximation the 

„step” 
• If the input of the FFNN (x) falls into a given range the appropriate 

approximator neuron has to be selected 
• The output of the network should be this selected value 
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Representation – Blum and Li construction 



1. Incoming arbitrary x 
value 

2. The appropriate 
interval will be selected 

3. The response of the 
network is the response 
of selected neuron 
(approximator) 

Representation – Blum and Li construction 
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• This construction … 
• … has no dimensional limits 

• … has no equidistance restrictions on tiles (partitions) 

• … can be further fined, and the approximation can be any 
precise 

• 2 dimensional example 
• The tiles are the top 

of the columns for 
each approximation 
cell 

 

Representation – Blum and Li construction 
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• Construction 
for one  
particular 
region 

• The output 
is I1 if we 
are in this 
region 

Representation – Blum and Li construction 
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• Construction 
for one  
particular 
region 

• The output 
is I2 if we 
are in this 
region 

Representation – Blum and Li construction 
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• Each region 
is being 
approximated 
by a block 
specified 
above 

Representation – Blum and Li construction 
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• Third layer 
• This neuron has linear 

activation function 

• The weights of this neuron are 
the approximation values of 
the F function 

• Thus the approximation for 
the whole domain of the 
original F function is done by 
FFNN 

Representation – Blum and Li construction 
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Blum and Li – Limitations 

• The size of the FFNN constructed via this method is quite big 

• Consider the task on the picture, where let us have 1000 by 
1000 cell to approximate the function 

• General case:  
 ~2 Million neurons are needed 

• Smoother approximation needs more 

• We are after to find a less complicated 
architecture 
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• Nor minimization task neither construction is possible most cases 
• Complete information would be needed about F(x), however it is typically 

unknown 

• Weak learning in incomplete environment, instead of using F(x) 

 
• A training set is being constructed of observations 

 

Learning 
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• Rather than minimizing the error function 

 
 

• The approximation is the best achievable  
• F function is known in a limited positions (training set) 

 

 

 

 

Learning 

9/28/2018. 25 

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

    
2 2

opt 1: min F( ) Net min .. F( ) Net ... N, , dx dx   w w
w x x w x x w



9/28/2018. 26 

Unknown system
F(.)

FFNN

-

xk dk

yk

εk

desired output

output

input error signal

wopt

    
2 2

opt 1: min F( ) Net min .. F( ) Net ... N, , dx dx   w w
w x x w x x w

Learning 



• The questions are the following 

• What is the relationship of these optimal weights 

 

 
 

• How this new objective function should be minimized as 
quickly as possible 

 

 

Learning 
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• Empirical error 
 
 

• Theoretical error 
 
 

• Let us have xk random variables subject to uniform 
distribution 
 

Statistical learning theory 
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• xk random variable, where d=F(x) 

 

Statistical learning theory 
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• Therefore 
 

 

• Where l.i.m. means: lim in mean 

 

 

 

Statistical learning theory 
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• Learning based on the training set: 
 
 

• Minimize the empirical error function (Remp) 
 
 
 

• Learning is a multivariate optimization task 
 

Learning – in practice 
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• First order gradient based optimization method: 
 
 

• Iterative method 
• Each step modify the weights  
• To reduce the error 

• The empirical error of the actual neuron is computed  
• The gradient of this error is used to modify the weight 

Learning – Newton method 
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• The Rosenblatt algorithm is inapplicable,  
• the error and desired output in the hidden layers of the FFNN is unknown 

• Someway the error of the whole network has to be distributed 
to the internal neurons, in a feedback way 

 

Learning 
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Error signals

Function signals

Forward propagation of  
function signals and  
back-propagation of  

errors signals 



 
•  Adapting the weights of the FFNN 

 
 
 

• The weights are modified towards the differential of the error 
function: 
 
 

• The elements of the training set adapted by the FFNN 
sequentially 

Sequential back propagation 
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Propagation and back propagation 
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Sequential or batch training mode 

• Sequential mode: 
– For each training vector both the forward and the 

backward propagation is done one after the other 
– Weights are updated after each input 

• Batch mode: 
– All the training vectors are applied, and the total error of 

the training set is calculated 
– The weight updates are calculated with the accumulated 

error 
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Literature 

• Simon Haykin:  
Neural Networks and 
Learning Machines 

• Back propagation: 
Page 129-141 

• http://dai.fmph.uniba.sk/courses/NN/haykin.
neural-networks.3ed.2009.pdf 
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