
Neural Networks

(P-ITEEA-0011)

Akos Zarandy

Lecture 3

September 23, 2018

Multilayer Perceptron

Back-propagation algorithm

Contents
• Recall

• Single-layer perceptron and its learning method

• Multilayer perceptron
• Topology

• Operation

• Representation

• Blum and Li construction

• Learning
• Back-propagation

 9/28/2018. 2

9/28/2018. 3

• Receives input through its synapsis (xi)

• Synapsis are weighted (wi) (including bias)

• A weighted sum is calculated

• Nonlinear activation function

Single-layer Perceptron

xi : input vector
wki : weight coefficient vector
vk : weigthted sum
bk : bias value of neuron k
ok : output value of neuron k

)(
0

xw
T

m

i

ikik xwy  







 



9/28/2018. 4

Single-layer perceptron training:
Error correction

Desired
output
dk

Error

)()()(nyndn kkk 

kw

• Apply the input vector (xi)

• Calculate the output

• If output is false

• Modify the weights according to:

• Operation:
• When error is positive

the contribution of wkixi should
be increased

• Convergence is proven in case
of linearly separable task

)()(nnkk xw 

Multilayer perceptron

9/28/2018. 5

• Different names of Multilayer perceptron
• Feed forward neural networks (FFNN)
• Fully connected neural networks

• Multilayer neural network
– Input layer
– Hidden layers
– Output layer
– The outputs are the inputs of the following layer
– Many hidden layers  deep network

• Multiple inputs, multiple outputs

Multilayer perceptron

9/28/2018. 6

• Multilayer perceptrons are used for
• Classification

• Supervised learning for classification
• Given inputs and class labels

• Approximation
• Approximate an arbitrary function with arbitrary precision

• Prediction
• „What is the next element in the future of given time

series?”
• Stock market, currency exchange

Topology and naming

9/28/2018. 7

• Weights:

• Arrives to the lth layer

• Comes from the jth
neuron from the (l-1)th
layer

• Arrives to the ith neuron
of the lth layer

)(l

ijw

(1)

20w

y1

(1)

10w

(1)

1yx1

x2

(2)

10w(1)

11w

(1)

22w

(1)

21w

(1)

12w (1)

2y

(2)

11w

(2)

12w

0th layer:
input layer

1st layer:
first hidden layer

last layer:
output layer

)(l

ijw
source

destination

layer

• Sigmoid function
• Continuous

• Continuous differentiable

• We will use this

• Hyperbolic tangent function
• Continuous

• Continuous differentiable

• a, b > 0

Activation function options

9/28/2018. 8

ve
v







1

1
)(

)tanh()(bvav 

a

-a



v

• Signal flow through the network progresses left to right

• The output of the network:

• Where

• Number of layers: L, neurons in lth layer: nl

Operation

9/28/2018. 9

1 1

() (1) (1)

1 11

(, · ·) ·

L Ln n
L L

i ij km

j

n

m

mi

Net y w xw w  









  
  

 
   

 
 

 
  

  W x

 (1) (1) (1) (2) (2) ()

1,0 1,1 1,2 1,0 1,1 1,0,, ,, , , ,Lw w ww w w   W

Phicaselowersametheare
e

v
v




,
1

1
)(




• When solving engineering task by FFNN
we are faced with the following questions:

Questions

9/28/2018. 10

1. Representation
– What kind of functions can be represented by an FFNN?

2. Learning
– How to set up the weights to solve a specific given task?

3. Generalization
– If only limited knowledge is available about the task which is to be

solved, then how the FFNN is going to generalize this knowledge?

• Can it approximate a function?
Can it approximate all the function? With what precision?

• The notation || || defines a norm used in F space

• For example error computed as follows in L

p

Representation

9/28/2018. 11

()
: () (,)

0

F
F Net 



  
  

 

x
w x x w

F

 () (,) , N

p
F Net xx   X

x x w ddL

• Theorem (Harnik, Stinchambe, White 1989)

• Every function in L
p
 can be

represented arbitrarily closely
approximation by a neural net

• More precisely for each

• Since it is out of the focus of the course this proof will not be
presented here

Representation – Theorem 1

12

() pF x L

 () ()

0,

, ,
p

NF Net x x 

  

  X
x x dw d

w

L

  

  

  

2

1

2

: ,

: ,

: ,

N

p

N

p

Nx

x

L F x x

L F x x

F x x xL

 

 





 

 

 

 

X

X

X

d

d

d

d

d

d

L

L

L

Recall:

• Theorem:

• Proof:
• Using the step functions: S
• From elementary integral theory it is clear every function can be

approximated by appropriate step function sequence

Representation – Blum and Li theorem

9/28/2018. 13

 
2

() (,

0,

) , NF Net x x







 

 

 X
x x w dd

w

L

2()F x L

• This step function
can have arbitrary
narrow steps

• For example each
step could be divided
into two sub-steps

• Therefore we can
synthetize

Representation – Blum and Li theorem

9/28/2018. 14

1 if
()

0 else
I

X
X


 


x

()

)() () (
i

i

x

i

s

F x F x I x
1 44 2 4 43

• These steps partition the domain of the function
• One partition can be easily represented by small neural

network
• In two dimension the following figure gives an example

• The borders of the partition are hyper planes which could
represented by one perceptron

Representation – Blum and Li theorem

9/28/2018. 15

• The Blum and Li construction is based on the „LEGO” principle
• The approximation of the F function is based on its step functions
• This step function partitions the domain of the original F function
• For each partition there is a neuron responsible for approximation the

„step”
• If the input of the FFNN (x) falls into a given range the appropriate

approximator neuron has to be selected
• The output of the network should be this selected value

9/28/2018. 16

Representation – Blum and Li construction

1. Incoming arbitrary x
value

2. The appropriate
interval will be selected

3. The response of the
network is the response
of selected neuron
(approximator)

Representation – Blum and Li construction

9/28/2018. 17

1.

2.

3.

• This construction …
• … has no dimensional limits

• … has no equidistance restrictions on tiles (partitions)

• … can be further fined, and the approximation can be any
precise

• 2 dimensional example
• The tiles are the top

of the columns for
each approximation
cell

Representation – Blum and Li construction

9/28/2018. 18

• Construction
for one
particular
region

• The output
is I1 if we
are in this
region

Representation – Blum and Li construction

9/28/2018. 19

x2

xM

-1

Σ

Σ

Σ

-1

-1

Σ x1

-1 (2)

10w

(2)

1Mw

(2)

12w

(2)

11w

.

.

.

.

.

.

.

.

.

(1)

11w

(1)

10w

(1)

12w

(1)

1Mw

AND
(1)

1s

1I (x)

AND perceptron with
0 or 1 output

Linear separation for
one side of the region

• Construction
for one
particular
region

• The output
is I2 if we
are in this
region

Representation – Blum and Li construction

9/28/2018. 20

x2

xM

-1

Σ

Σ

Σ

-1

-1

Σ x1

-1 (2)

10w

(2)

1Mw

(2)

12w

(2)

11w

.

.

.

.

.

.

.

.

.

(1)

11w

(1)

10w

(1)

12w

(1)

1Mw

AND
(1)

1s

2I (x)

AND perceptron with
0 or 1 output

Linear separation for
one side of the region

• Each region
is being
approximated
by a block
specified
above

Representation – Blum and Li construction

9/28/2018. 21

x2

xM

Σ

x1

1F(x)

.

.

.

.

.

.

.

.

.

(1)

11w
(1)

12w

(1)

1Mw

MF(x)

1I (x)

• Third layer
• This neuron has linear

activation function

• The weights of this neuron are
the approximation values of
the F function

• Thus the approximation for
the whole domain of the
original F function is done by
FFNN

Representation – Blum and Li construction

9/28/2018. 22

x2

xM

Σ

x1

1F(x)

.

.

.

.

.

.

.

.

.

(1)

11w
(1)

12w

(1)

1Mw

MF(x)

1I (x)

Blum and Li – Limitations

• The size of the FFNN constructed via this method is quite big

• Consider the task on the picture, where let us have 1000 by
1000 cell to approximate the function

• General case:
 ~2 Million neurons are needed

• Smoother approximation needs more

• We are after to find a less complicated
architecture

9/28/2018. 23

• Nor minimization task neither construction is possible most cases
• Complete information would be needed about F(x), however it is typically

unknown

• Weak learning in incomplete environment, instead of using F(x)

• A training set is being constructed of observations

Learning

9/28/2018. 24

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

    , ; 1,...,
K

k kd k K  x

• Rather than minimizing the error function

• The approximation is the best achievable
• F function is known in a limited positions (training set)

Learning

9/28/2018. 25

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

9/28/2018. 26

Unknown system
F(.)

FFNN

-

xk dk

yk

εk

desired output

output

input error signal

wopt

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

Learning

• The questions are the following

• What is the relationship of these optimal weights

• How this new objective function should be minimized as
quickly as possible

Learning

9/28/2018. 27

 

opt

???

opt

K
w w

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

• Empirical error

• Theoretical error

• Let us have xk random variables subject to uniform
distribution

Statistical learning theory

9/28/2018. 28

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

    
2 2

1F() Net F() Net ...
X

N, , dx dx   x x w x x w

• xk random variable, where d=F(x)

Statistical learning theory

9/28/2018. 29

    
2 2

1

1
lim E (,)

K

k k
k

k

d Net , d Net
K



     x w x w

  

  

  

2

1

2

1

2

1

F() Net () ...

1
F() Net ...

F() Net ...

X

X

X

N

N

N

, p dx dx

, dx dx
X

, dx dx

 











 

 

 

x x w x

x x w

x x w

:
Because it is ~ constant due to the uniformity

• Therefore

• Where l.i.m. means: lim in mean

Statistical learning theory

9/28/2018. 30

 

optoptl.i .m.
K

K
 w w

 

     
2 2

1

1

lim ()

1
lim F() Net ...

emp
K

K

k
K

h

X
k N

k

tR R

d Net , , dx dx
K








     

w w

x w x x w

Weak learning is satifactory!

• Learning based on the training set:

• Minimize the empirical error function (Remp)

• Learning is a multivariate optimization task

Learning – in practice

9/28/2018. 31

    , ; 1,...,
K

k kd k K  x

      
opt

2

1

1
: min min

K
K

k k emp

k

d Net , R
K 

 
w w

w x w w

kE

• First order gradient based optimization method:

• Iterative method
• Each step modify the weights
• To reduce the error

• The empirical error of the actual neuron is computed
• The gradient of this error is used to modify the weight

Learning – Newton method

9/28/2018. 32

     emp1 gradk (k) R k  
w

w w - w

• The Rosenblatt algorithm is inapplicable,
• the error and desired output in the hidden layers of the FFNN is unknown

• Someway the error of the whole network has to be distributed
to the internal neurons, in a feedback way

Learning

9/28/2018. 33
Error signals

Function signals

Forward propagation of
function signals and
back-propagation of

errors signals

• Adapting the weights of the FFNN

• The weights are modified towards the differential of the error
function:

• The elements of the training set adapted by the FFNN
sequentially

Sequential back propagation

9/28/2018. 34

() () ()

()

(1) () ()

() ?

l l l

ij ij ij

l

ij

w k w k w k

w k

   

 

()

()

empl

ij l

ij

R
w

w



  


((),)emp empR R y d x

Propagation and back propagation

9/28/2018. 35

Sequential or batch training mode

• Sequential mode:
– For each training vector both the forward and the

backward propagation is done one after the other
– Weights are updated after each input

• Batch mode:
– All the training vectors are applied, and the total error of

the training set is calculated
– The weight updates are calculated with the accumulated

error

9/28/2018 36

Literature

• Simon Haykin:
Neural Networks and
Learning Machines

• Back propagation:
Page 129-141

• http://dai.fmph.uniba.sk/courses/NN/haykin.
neural-networks.3ed.2009.pdf

9/28/2018 37

