Neural Networks

(P-ITEEA-0011)

Multilayer Perceptron
Back-propagation algorithm

Akos Zarandy
Lecture 3
September 23, 2018

Contents

e Recall
* Single-layer perceptron and its learning method

* Multilayer perceptron
* Topology
* QOperation

* Representation
e Blum and Li construction

* Learning
e Back-propagation

9/28/2018. 2

==

Single-layer Perceptron

* Receives input through its synapsis (x))

)7
sign function |\
Misha. '

* Synapsis are weighted (w;) (including bias) E—

* A weighted sum is calculated L
e Nonlinear activation function — |

Bias
by, (1 if uz0
-~ ; =
m T Xy P () =1 otherwise
Y =@ Zwki X |=e(W X) Activation
i—0 function
— .
) Output
. pu o) —> 7
X; : Input vector signals Yk
W,; : weight coefficient vector
vV, : weigthted sum junction
b, : bias value of neuron k X,
0, : output value of neuron k = -)
9/28/2018. ynaplic 3

Single-layer perceptron training:
Error correction W

Midla

l_

Apply the input vector (x))
Calculate the output I #
If output is false Bias

Modify the weights according to: X
Activation Desired
AW, =1 &, (n) x(n) . function Output output
. Input { - o(*) % d
Operation: signals .
 When error is positive
the contribution of w;;X; should _ - Error
be increased G - -
. . Synaptic _ .
Convergence is proven in case reights g.(n)=d, (n) -y, (n)

of linearly separable task

9/28/2018. 4

Multilayer perceptron

¥

-

* Different names of Multilayer perceptron Hidden
* Feed forward neural networks (FFNN)
* Fully connected neural networks

 Multilayer neural network
— Input layer
— Hidden layers
— Output layer
— The outputs are the inputs of the following layer
— Many hidden layers = deep network

* Multiple inputs, multiple outputs

Input

9/28/2018.

Multilayer perceptron

 Multilayer perceptrons are used for

* Classification

e Supervised learning for classification

* Given inputs and class labels
* Approximation

e Approximate an arbitrary function with arbitrary precision
* Prediction

* ,What is the next element in the future of given time
series?”

* Stock market, currency exchange

9/28/2018. 6

Topology and naming

(1)

. Wi
* Weights: . ;
 Arrives to the 1" layer WSL

« Comes from the j
neuron from the (I-1)%
layer

« Arrives to the ith neuron
of the I layer

Y1

last layer:
output layer

I ot layer
ayer input layer (1)
w N
ij 1stlayer:
desUnaﬂon’//////// source first hidden layer

Activation function options /,——

e Sigmoid function 1 55
. ¢(V): _lv
 Continuous l+e
e Continuous differentiable L g | . |

e We will use this

QA
 Hyperbolic tangent function a
. Continuous
e Continuous differentiable A e
* ab>0 p()=atanh(by) 7 Y
9/28/2018. -a

e Signal flow through the network progresses left to right \

 The output of the network:

Net(W,x) =y = ¢[_”z wt -¢(H_Zw.,“” = .-¢[n

e Where
_ €N €N @ (2) (2) (L)
W_(Wl,o ’W1,1 ’W1,2 ""’Wl,O ’W1,1 ""Wl,O ’)
1 :
d(V) = = @, @ are the same lower case Phi
+e

« Number of layers: L, neurons in I™" layer: n!

9/28/2018. 9

Hidden

N

Output
"\
[

Questions

|
|
|

N

* When solving engineering task by FFNN >\
: : : /YN
we are faced with the following questions: ,.

—
1. Representation Q

— What kind of functions can be represented by an FFNN?

2. Learning
— How to set up the weights to solve a specific given task?

3. Generalization

— If only limited knowledge is available about the task which is to be
solved, then how the FFNN is going to generalize this knowledge?

9/28/2018. 10

Representation

e Canitapproximate a function?
Can it approximate all the function? With what precision?

VB0 < ‘T} — 3w : ||F (X) — Net(x,w)|| < &
>0
 The notation || || defines a norm used in ‘F space

jlj([(FO) — Net(x,w))* dx,...dx, <&
 For example error computed as follows in L°

9/28/2018. 11

Representation — Theorem 1

o
A
Theorem (Harnik, Stinchambe, White 1989)

Every function in L” can be

represented arbitrarily closely Recall:

approximation by a neural net | L*: [L [(F (x))dx,...dx, <oo
More precisely for each E I'} .[(': (X))z dx....dx. < oo
F(x)elL® . .

Ye>0,aw L J‘I& J.(F(X)) dx,...dXx, <cod

Jr J(FO)—Net(x,w))® dx,...dx, <&

Since it is out of the focus of the course this proof will not be
presented here 12

Representation — Blum and Li theorem

* Theorem: F()el’
Ve >0,3dw

* Proof: .‘.Ii I(F(X) N Net(x,w))2 dx,...dxy <&

. Using the step functions: S

. From elementary integral theory it is clear every function can be

approximated by appropriate step function sequence
A

9/28/2018. | 13

Representation — Blum and Li theorem

 This step function
can have arbitrary
narrow steps

 For example each
step could be divided
into two sub-steps

e Therefore we can
synthetize

9/28/2018.

A

1(X) = 1 ifxeX
] 0 else

FOO =2 FOOT0%)

1 442 4 8
s(x)

14

Representation — Blum and Li theorem

 These steps partition the domain of the function

e One partition can be easily represented by small neural
network

. In two dimension the following figure gives an example

e The borders of the partition are hyper planes which could
represented by one perceptron

9/28/2018. 15

Representation — Blum and Li construction

 The Blum and Li construction is based on the ,,LEGO” principle
* The approximation of the F function is based on its step functions
e This step function partitions the domain of the original F function

* For each partition there is a neuron responsible for approximation the
,step”

* Ifthe input of the FFNN (x) falls into a given range the appropriate
approximator neuron has to be selected

* The output of the network should be this selected value
A

e
>SS S
JZ‘ \x_z‘% xi

9/28/2018. 16

=P

Representation — Blum and Li construction gig
1. Incoming arbitrary x
value

A

2. The appropriate
interval will be selected

3. The response of the
network is the response
of selected neuron
(approximator)

9/28/2018. 17

Representation — Blum and Li construction

e This construction ...
e ... has nodimensional limits
e ... has no equidistance restrictions on tiles (partitions)

e ...can be further fined, and the approximation can be any
precise

e 2 dimensional example

* The tiles are the top
of the columns for
each approximation
cell

9/28/2018. 18

Representation — Blum and Li construction

* Construction
for one
particular
region

 The output
is 1, if we
are in this
region

Linear separation for AND perceptron with

0/28/2018. one side of the region 0 or 1 output

Representation — Blum and Li construction

Construction
for one
particular
region

The output
is |, if we
are in this
region

Linear separation for AND perceptron with
0/28/2018. one side of the region 0 or 1 output

Representation — Blum and Li construction i

* Each region

is being w®
. X &)
approximated Wi
by a block
o o W(M
specified X,
above ”
Xm

9/28/2018. 21

Representation — Blum and Li construction i

e Third layer
@ I, (X
* This neuron has linear X, s - 1)
. . . Wl
activation function
* The weights of this neuron are Wi
M

the approximation values of X, —
the F function

* Thus the approximation for .] _
the whole domain of the , F(Xu)

original F function is done by -—/
I

FFNN
9/28/2018. 22

Blum and Li — Limitations

* The size of the FFNN constructed via this method is quite big

* Consider the task on the picture, where let us have 1000 by
1000 cell to approximate the function

e General case:
~2 Million neurons are needed

* Smoother approximation needs more

hidden layer 1 hidden layer 2 hidden layer 3
input layer

 We are after to find a less complicated
architecture

9/28/2018.

Learning W
Wy, 1 MIN |[FOO — Net(x,w)”2 = min J'..J'(F(x) — Net(x,w))2 dx,...dx,,

 Nor minimization task neither construction is possible most cases

 Complete information would be needed about F(x), however it is typically
unknown

 Weak learning in incomplete environment, instead of using F(x)

* Atraining set is being constructed of observations

9/28/2018. 24

Learning

e Rather than minimizing the error function
W, - min |[F(x) — Net(x,w)”2 = min _f.._f(F(x) — Net(x,w))2 dx,...dx,,

* The approximation is the best achievable

e F functionis known in a limited positions (training set)

w') - min %ZK:(dk — Net (x, ,W))2
W k=1

opt

9/28/2018. 25

Learning

ﬁ?fn

Wop, & MIN [FG) — Net(x,W)”2 _ MWF(@W)‘ dx, ...dx,,

input desired output
Xk Unknown system dy €k
F(.) (D
WOpt/'
: FFNN Y
output
9/28/2018. K

—>

error signal

26

Learning

* The questions are the following

 What is the relationship of these optimal weights

277

S,
W <> W

K)

pt

w'') - min %ZK:(dk — Net (x, ,W))2
W k=1

* How this new objective function should be minimized as
quickly as possible

9/28/2018. 27

Statistical learning theory

 Empirical error
]_ K
Remp (W) = ?Z(dk — Net (x,,w))’
k=1

e Theoretical error

[FO<) — Net (x,w)||* = _[.).(.J‘(F(x) — Net(x,w))’ dx,...dx,

* Let us have x, random variables subject to uniform
distribution

9/28/2018. 28

Statistical learning theory \s

* X, random variable, where d=F(x)

lim = %i(dk — Net (%, ,w))2 = E(d — Net(x,w))" =

K—>o0

[J(FOO — Net (x,w))” pex)dx,...dx, =

Because it is ~ constant due to the uniformity

|X|f J(FO) —Net(x, w))” dx,...dx, :

f.).(.“(F(x) — Net(x,w)) dx,...dx,

9/28/2018. 29

Statistical learning theory

e Therefore
Li.m.w — w ()

K —>o0 opt

e Where l.i.m. means: lim in mean

lim R, (W) =Ry (w)

K—>o0

L'EOKZ(CI — Net (X, W)) _I J'(F(x) Net (X, W)) dx, ...dx,,

Weak learning is satifactory!

9/28/2018. 30

Learning — in practice

* Learning based on the training set:

* Minimize the empirical error function (R,,,)

K
W(o':) :min %Z(dk — Net (%, ,W))2 =minR,, (w)
w = w

- J

E,

* Learningis a multivariate optimization task

9/28/2018. 31

Learning — Newton method

* First order gradient based optimization method:
w(k +1) =w(k)-77-grad { R, (w(k))}

Iterative method
e Each step modify the weights
 To reduce the error

 The empirical error of the actual neuron is computed
The gradient of this error is used to modify the weight

9/28/2018. 32

Learning

 The Rosenblatt algorithm is inapplicable,
* the error and desired output in the hidden layers of the FFNN is unknown

 Someway the error of the whole network has to be distributed
to the internal neurons, in a feedback way

Forward propagation of
function signals and
back-propagation of

errors signals

» Function signals

oo Error signals
9/28/2018. 33

Sequential back propagation

* Adapting the weights of the FFNN
wi? (k +1) = w;” (K) + Awg” (k)

AW (k) =7
* The weights are modified towards the differential of the error
function: " AR
AW;” =—17 PYVO)
ij

* The elements of the training set adapted by the FFNN
sequentially
I:Qemp — Fzemp (y(X), d)

9/28/2018. 34

Propagation and back propagation

wl) — p® +1 W —p®@

) () 10 o) .
1 - - - 1
(1) (2)
X2 L o() B o0 v e
(1) (2)
Xa 5 o).y & oy &
g o v
[~
R R Y Y Y >
@ ('@;(@ ('@,(I
1?3"() “'E} q,u'(
< < < e,
< < < e,
B =
v ¥ v ¥
e &) o el?)) o)

9/28/2018. 35

Sequential or batch training mode

e Sequential mode:

— For each training vector both the forward and the
backward propagation is done one after the other

— Weights are updated after each input

e Batch mode:

— All the training vectors are applied, and the total error of
the training set is calculated

— The weight updates are calculated with the accumulated
error

9/28/2018 36

ﬁ,ﬁ

Literature

e Simon Haykin:
Neural Networks and

Learning Machines ‘ \. “Neural
» Back propagation: Vi 'Networkg
Page 129-141 L% -+ -+ Learning

http://dai.fmph.uniba.sk/courses/NN/haykin.
neural-networks.3ed.2009.pdf

Machines

Third Edition

Simon Haykin

9/28/2018

